Geovisor de vulnerabilidad contra COVID-19 para Colombia
DOI:
https://doi.org/10.56085/01238590.518Descargas
Referencias bibliográficas
Acharya R, Porwal A. A vulnerability index for the management of and response to the COVID-19 epidemic in India: An ecological study. Lancet Glob Health. 2020 sept.;8(9):E1142-E1151. Disponible en: https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(20)30300-4/fulltext. https://doi.org/10.1016/S2214-109X(20)30300-4
https://doi.org/10.1016/S2214-109X(20)30300-4
Albitar O, Ballouze R, Ooi J, Sheikh Ghadzi, S. Risk factors for mortality among COVID-19 patients. Diabetes Res Clin Pract. 2020 ag.;166:1082-93. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332436/pdf/main.pdf. https://doi.org/10.1016/j.diabres.2020.108293
https://doi.org/10.1016/j.diabres.2020.108293
COVID-19 Healthcare Coalition. 2020. Tracking vulnerable population by region. Disponible en: https://c19hcc.org/resource/vulnerable-population
Daras K, Alexiou A, Rose T, Buchan I, Taylor-Robinson D, Barr B. How does vulnerability to COVID-19 vary between communities in England? Developing a small area vulnerability index (SAVI). J Epidemiol Community Health. 2021 ag.;75(8):729-734. Disponible en: https://jech.bmj.com/content/75/8/729. https://doi.org/10.1136/jech-2020-215227
https://doi.org/10.1136/jech-2020-215227
Espinosa O, Dos Santos-Zanetti A, Fornanciari-Antunes E, Gulin-Longhi F, De Matos T, Battaglini, P. (2020). Prevalence of comorbidities in patients and mortality cases affected by SARS-CoV2: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo. 2020;62:e43:1-13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310609/. https://doi.org/10.1590/s1678-9946202062043
https://doi.org/10.1590/s1678-9946202062043
Hartigan J, Wong M. Algorithm AS 136: a k-means clustering algorithm. Appl Stat. 1979;28(1):100-108. https://doi.org/10.2307/2346830
https://doi.org/10.2307/2346830
Li J, Huang D, Zou B, Yang H, Hui W, Rui F, et al. Epidemiology of COVID-19: a systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449-1458. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436673/pdf/JMV-93-1449.pdf. https://doi.org/10.1002/jmv.26424
https://doi.org/10.1002/jmv.26424
Marvel S, House J, Wheeler M, Song K, Zhou Y, Wright F, et al. The COVID-19 pandemic vulnerability index (PVI) dashboard: monitoring county-level vulnerability using visualization, statistical modeling, and machine learning. Environ Health Perspect. 2021;129(1):017701. Disponible en: https://ehp.niehs.nih.gov/doi/10.1289/EHP8690. https://doi.org/10.1289/EHP8690
https://doi.org/10.1289/EHP8690
Tiwari A, Dadhania A, Ragunathrao V, Oliveira E. Using machine learning to develop a novel COVID-19 vulnerability index (C19VI). Sci Total Environ. 2021;773:145650. Disponible en: https://www.sciencedirect.com/science/article/pii/S004896972100718X. https://doi.org/10.1016/j.scitotenv.2021.145650
https://doi.org/10.1016/j.scitotenv.2021.145650
Hastie T, Tibshirani R, Friedman J. (2008). The elements of statistical learning. Data mining, inference, and prediction. 2 ed. Stanford: Springer.
https://doi.org/10.1007/978-0-387-84858-7
Williamson E, Walker A, Bhaskaran K, Bacon S, Bates C, Morton C, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-436. Disponible en: https://www.nature.com/articles/s41586-020-2521-4. https://doi.org/10.1038/s41586-020-2521-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Secretaría Distrital de Salud de Bogotá

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los derechos de reproducción serán de la Secretaría Distrital de Salud de Bogotá.