

Modelación matemática de la propagación del SARS-CoV-2 en la Ciudad de Bogotá

David Santiago Quevedo¹ Leonardo Salas² Juan David Serrano¹

1 Subsecretaría de Salud Pública 2 Observatorio de Salud

Resumen

Dada la incertidumbre de la situación que genera la COVID-19 y las implicaciones de las medidas para limitar la movilidad de las personas, el presente estudio utilizó datos globales y regionales de la pandemia de COVID-19, en conjunción con un modelo compartimental determinístico del tipo SEIR, para estimar la cantidad necesaria de recursos sanitarios para atender la epidemia producida por el SARS-CoV-2 en la ciudad de Bogotá. Los cálculos se realizaron en un conjunto de escenarios con el fin de proveer a los tomadores de decisiones una herramienta para comprender los efectos del distanciamiento social y brindar un estimado de la cantidad necesaria de recursos sanitarios ante dichos escenarios. Se reportaron los resultados de un modelo dinámico compartimental determinista que clasifica a la población en once categorías (algunas no observables).

Palabras clave: modelo matemático, modelo epidemiológico, pandemia, epidemia, SEIR, Bogotá D. C., coronavirus, COVID-19, SARS-CoV-2, proyección.

Introducción

En diciembre de 2019 se identificó en Wuhan. provincia de Hubei, República Popular de China,

casos de neumonía viral a causa del coronavirus, los cuales se propagaron rápidamente dentro y fuera de la provincia, causando alerta en los organismos sanitarios internacionales. Posteriormente, el 12 de enero de 2020, la Organización Mundial de la Salud indicó que la neumonía viral presentada en Hubei era producto de un nuevo coronavirus, el cual se denominó oficialmente como SARS-CoV-2, y el 11 de marzo se declaró la pandemia dada la afección en número de contagios y muertos en el mundo.

El 6 de marzo de 2020 se confirmó el caso índice de COVID-19 en Bogotá, y el 20 de marzo del mismo año entró en vigencia en la capital el Decreto 090 de 2020, el cual limitaba totalmente la libre circulación de vehículos y personas en el Distrito desde el día jueves 19 de marzo de 2020 a las 23:59 horas hasta el 23 de marzo de 2020 a las 23:59 horas. Luego, mediante el Decreto 457, el Gobierno nacional aplicó a todo el país la orden de aislamiento preventivo obligatorio hasta las cero horas del 13 de abril, medida que se amplió hasta las cero horas del 27 de abril de 2020 mediante el Decreto 531 del 8 de abril de 2020.

A partir de esta fecha, se iniciaba una apertura gradual por medio del Decreto 593 del 24 de abril, que introducía excepciones a las medidas de aislamiento dirigidas a personas que desempeñaban actividades en obras de construcción de edificaciones, cadenas de manufactura, juegos de azar y suerte (loterías y chances) y casas de cambio, así como el sector de bicicletas y parqueaderos públicos para vehículos. Posteriormente, el Gobierno nacional expidió el Decreto 749 del 28 de mayo de 2020, el cual extendió la orden de aislamiento preventivo obligatorio pero que introduce 43 excepciones relacionadas con la activación económica.

A la fecha del 1 de julio de 2020, Bogotá contaba con 30.017 casos confirmados y 680 fallecidos. Una de las condiciones necesarias para dar manejo adecuado a la epidemia causada por el SARS-CoV-2 en el Distrito consistió en incrementar la capacidad instalada de recursos sanitarios. Estudios han mostrado que la mayor fuente de variación de la letalidad producida por el COVID-19 en países de medianos-altos y altos ingresos (UMIC y HIC) se debía a la capacidad hospitalaria, mientras que para países con bajos y medianos-bajos ingresos (LIC y LMIC) se estimó que esta variación ocurriría en mayor medida gracias a la calidad de los servicios de salud (1). Estas afirmaciones se han soportado mediante simulaciones basadas en un modelo de tipo SEIIHR con una estructura etaria (1).

Dado que Bogotá posee características propias de un territorio con ingresos relativamente altos, se puede inferir que es preciso aumentar la cantidad de unidades de cuidados intensivos y camas de hospitalización general con el fin de reducir la letalidad (IFR) causada por el coronavirus. Sin embargo, en el momento no es posible pronosticar con precisión la cantidad de infectados por SARS-CoV-2 para algún país o territorio, así como la tasa de mortalidad, las dificultades derivadas

de la pandemia en cada región o los beneficios y desventajas que surgirán de los diferentes enfoques que se están implementando para controlar el virus (1).

La siguiente sección de este documento introduce el modelo básico para la simulación de escenarios y explica sus supuestos; posteriormente se presentan resultados y en la última parte se recolectan las conclusiones, limitaciones y trabajo futuro.

Materiales y métodos

Estructura

La estructura del modelo aquí presentado es una adaptación del modelo expuesto en https://mrc-ide.github.io/global-lmic-reports/parameters.html y en el material suplementario de Walker (1), que nos permite realizar simulaciones basándonos en métodos propios de la teoría de ecuaciones diferenciales ordinarias. La figura 1 exhibe el diagrama del modelo SEIIHR.

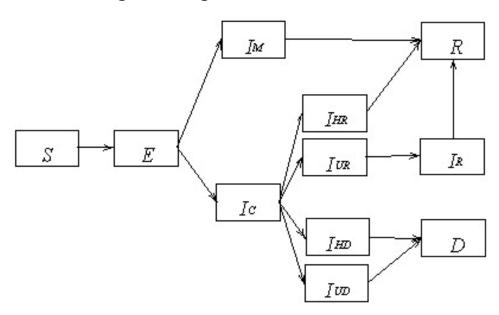


Figura 1. Diagrama del modelo SEIIHR.

Los compartimentos en los cuales se divide la población se describen a continuación:

- 1) Susceptibles (S): aquellos individuos que no han sido infectados por el patógeno y es posible que sean infectados.
- 2) Expuestos (E): aquellos individuos que se encuentran en el periodo de latencia; es decir, han sido inoculados por el patógeno, pero aún no son infecciosos.
- 3) Infecciosos moderados (I_M): Aquellos individuos de la población que han sido inoculados por el virus, son infecciosos, pero no requieren ni requerirán cuidados hospitalarios.
- 4) Infecciosos prehospitalarios (I_c): aquellos individuos de la población que han sido inoculados por el virus, son infecciosos, no se encuentran hospitalizados, pero requerirán cuidados hospitalarios.
- 5) Pacientes en hospitalización general que se recuperarán (I_{HR}).
- 6) Pacientes en UCI que se recuperarán (I_{UR}).
- 7) Pacientes en hospitalización general que fallecerán (I_{HD}).
- 8) Pacientes en UCI que fallecerán (I_{UD}) .
- 9) Pacientes en cama de recuperación posUCI (I_p).
- 10) Recuperados (R): aquellos individuos que se recuperan de la infección, habiendo desarrollado anticuerpos bajo el supuesto de que no se vuelven a infectar.
- 11) Muertos (D): aquellos individuos que no superan la infección y fallecen.

Una vez definidos los compartimentos, se procede a evaluar la transición entre ellos (figura

- 1). Una persona solo puede ser infectada por alguno de los individuos en los compartimentos de individuos infecciosos I. Al ser inoculado por el patógeno, el individuo pasa al grupo de expuestos (E). Pasado un tiempo conocido como periodo de latencia, la persona en el estado de expuestos tiene dos posibilidades:
- 1) Ingresar al compartimento de infecciosos (I_M): aquellos moderados recuperarán sin requerir ningún tipo de cuidado hospitalario.
- 2) Ingresar al compartimento de infecciosos prehospitalarios (I_c): aquellos individuos que requerirán hospitalización.

Una vez termina el periodo infeccioso de un individuo en el compartimento $I_{_{\rm M}}$, hay una transición al compartimento de los recuperados (R) independientemente de si aún presenta algunos síntomas leves. Por otro lado, después de un tiempo en el compartimento, los individuos prehospitalarios seguirán uno de los siguientes cuatro caminos:

- 1) Ingresar al compartimento de los hospitalizados que se recuperarán (I_{HR}) .
- 2) Ingresaral compartimento de los individuos que requieren UCI y sobrevivirán (I_{LIR}).
- 3) Ingresar al compartimento individuos que requieren hospitalización y fallecerán (I_{HD}).
- al compartimento 4) Ingresar los individuos que requieren UCI y fallecerán $(I_{UD}).$

En este momento vale la pena mencionar que los estados I son latentes, esto es: en la práctica no es posible determinar en qué compartimento se encuentra cada individuo dado que no se puede conocer de antemano el desenlace de cada infección. Una forma adecuada de entender la cantidad de individuos en cada compartimento es en términos de valores esperados.

Una vez un individuo en I_{HR} es dado de alta, este se mueve al compartimento de recuperados. Para los individuos en el compartimento I_{UR} existe un paso intermedio: antes de pasar al grupo de los recuperados, estos se mueven a una cama de recuperación posUCI (I_R) . Los individuos en los compartimentos I_{HD} e I_{UD} lamentablemente fallecen después de un periodo de estancia en cada uno de los compartimentos. Es decir, ingresan al compartimento D.

Para tratar el modelo con métodos numéricos estándar y la teoría de sistemas dinámicos, se realizan los siguientes supuestos usuales:

- (S1) Todas las personas de la población se comportan de la misma manera. Es decir, los individuos tienen y acogen hábitos similares.
- (S2) Todos los individuos tienen la misma probabilidad de ser susceptibles a una enfermedad dada.
- (S3) Todas las personas se relacionan con otras personas de manera aleatoria.

Gracias a estos supuestos, es posible simular los escenarios haciendo uso de los métodos de ecuaciones diferenciales ordinarias. Las ecuaciones del modelo se describen a continuación (note que, por facilidad en la interpretación, el tamaño de cada compartimento se presenta con la misma notación que en la figura 1; N simboliza el tamaño de la población). Se recomienda consultar a Brauer para un tratamiento amplio de modelización de enfermedades transmisibles (2).

$$\frac{dS}{dt} = -S(\beta_M(t)I_M + \beta_C(t)I_C + \beta_{HR}(t)I_{HR} + \beta_{UR}(t)I_{UR} + \beta_{HD}(t)I_{HD} + \beta_{UD}(t)I_{UD} + \beta_R(t)I_R)/N$$

$$\frac{dE}{dt} = S(\beta_M(t)I_M + \beta_C(t)I_C + \beta_{HR}(t)I_{HR} + \beta_{UR}(t)I_{UR} + \beta_{HD}(t)I_{HD} + \beta_{UD}(t)I_{UD} + \beta_R(t)I_R)/N - \omega E$$

$$\frac{dI_M}{dt} = \delta_M \omega E - \gamma_M I_M$$

$$\frac{dI_C}{dt} = (1 - \delta_M)\omega E - \sigma_C I_C$$

$$\frac{dI_{HR}}{dt} = \delta_{HR}\sigma_C I_C - \gamma_{HR}I_{HR}$$

$$\frac{dI_{UR}}{dt} = \delta_{UR}\sigma_C I_C - \nu I_{UR}$$

$$\frac{dI_{HD}}{dt} = \delta_{HD}\sigma_C I_C - \sigma_{HD}I_{HD}$$

$$\frac{dI_{UD}}{dt} = (1 - \delta_{HR} - \delta_{UR} - \delta_{HD})\sigma_C I_C - \sigma_{UD}I_{UD}$$

$$\frac{dI_R}{dt} = \nu I_{UR} - \gamma_R I_R$$

$$\frac{dR}{dt} = \gamma_M I_M + \gamma_{HR}I_{HR} + \gamma_R I_R$$

$$\frac{dD}{dt} = \sigma_{HD}I_{HD} + \sigma_{UD}I_{UD}$$

$$\frac{dN}{dt} = -(\sigma_{HD}I_{HD} + \sigma_{UD}I_{UD})$$

Donde

- 1) $\beta_i(t)$ es la tasa de transmisión en el momento t para un individuo en el compartimento I_i con $i \in \{M, C, HR, UR, HD, UD, R\}$. Esta tasa se interpreta como la cantidad de infectados que genera un individuo en el compartimento correspondiente por día.
- 2) ω es el reciproco del periodo de latencia.
- 3) $\delta_{\rm M}$ es la probabilidad de ingresar al compartimento de los infecciosos moderados.
- 4) $\gamma_{\rm M}$ es el recíproco del periodo infeccioso para un individuo en el compartimento $I_{\rm M}$.
- 5) $\sigma_{\rm C}$ es el recíproco del tiempo promedio de estadía en el compartimento I $_{\rm C}$.
- 6) δ_{HR} es la probabilidad de ingresar al compartimento I_{HR} para un individuo que sale del compartimento I_{C} .

- 7) γ_{HR} es el recíproco del tiempo medio de estadía en hospitalización general para un individuo que se va a recuperar.
- 8) $\delta_{\rm UR}$ es la probabilidad de ingresar al compartimento $I_{\rm UR}$ para un individuo que sale del compartimento $I_{\rm C}$.
- γ_{UR} es el recíproco del tiempo medio de estadía en unidad de cuidados intensivos para un individuo que se va a recuperar.
- 10) V es el recíproco del tiempo promedio de estadía en UCI antes de pasar a cama de recuperación.
- 11) δ_{HD} es la probabilidad de ingresar al compartimento I_{HD} para un individuo que sale del compartimento I_{C} .

- 12) σ_{HD} es el recíproco del tiempo al fallecimiento promedio para los individuos en hospitalización general.
- 13) σ_{UD} es el recíproco del tiempo medio al fallecimiento para los individuos en unidad de cuidados intensivos.
- 14) γ_R es el recíproco del tiempo medio en cama de recuperación posUCI.

Estado de equilibrio del sistema

Para determinar el estado de equilibrio del sistema, se parte de las derivadas de los compartimentos de susceptibles y expuestos igualadas a cero.

$$\frac{dS}{dt} = -\frac{S}{N} [\beta_M (I_M + I_C) + \beta_H (I_{HR} + I_{UR} + I_{HD} + I_{UD} + I_R)] = 0$$

$$\frac{dE}{dt} = -\frac{S}{N} [\beta_M (I_M + I_C) + \beta_H (I_{HR} + I_{UR} + I_{HD} + I_{UD} + I_R)] - \omega E = 0$$

Si se asumen S y N y no nulos, se tiene que

$$[\beta_M(I_M + I_C) + \beta_H(I_{HR} + I_{UR} + I_{HD} + I_{UD} + I_R)] = 0$$

y por consiguiente $-\omega E=$, lo que implica que E=0 .

Al anularse, los demás compartimentos se anulan automáticamente, por lo que la

única solución al sistema de ecuaciones en equilibrio es:

$$E = I_M = I_C = I_{HR} = I_{UR} = I_{HD} = I_{UD} = I_R = 0$$

Es decir, la solución trivial. Este comportamiento es típico de los modelos compartimentales sin reinfecciones.

En esta subsección se presenta la adaptación de los parámetros reportados en https://mrc-ide.github.io/global-lmic-reports/parameters.html y el suplemento de Walker a la demografía bogotana (1).

Probabilidades

Las probabilidades de severidad por grupo etario presentadas en el cuadro 1 son un ajuste de las reportadas en Verety (3). Para calcular los parámetros δ , se recurre a la teoría básica de probabilidad teniendo en cuenta la estructura etaria de Bogotá reportada por el DANE en 2019.

Tabla 1. Tamaño de los grupos etarios y probabilidades de severidad condicional

Grupo etario	Tamaño	Probabilidad de requerir hospitalización	Probabilidad de caso crítico	Probabilidad de morir caso no crítico
[0,5)	486341	0,000744192	0,05022296	0,0125702
[5,10)	477908	0,000634166	0,05022296	0,0125702
[10,15)	492552	0,001171109	0,05022296	0,0125702
[15,20)	562016	0,002394593	0,05022296	0,0125702
[20,25)	718131	0,005346437	0,05022296	0,0125702
[25,30)	724454	0,010289885	0,05022296	0,0125702
[30,35)	651833	0,016234604	0,05022296	0,0125702
[35,40)	599112	0,023349169	0,05321494	0,01336115
[40,45)	519983	0,028944623	0,05974426	0,01510469
[45,50)	470334	0,038607042	0,07460288	0,01916412
[50,55)	465196	0,057734879	0,10361242	0,02747752
[55,60)	423099	0,072422135	0,14942799	0,04176211
[60,65)	336100	0,101602458	0,2237773	0,06853166
[65,70)	246821	0,116979814	0,30698592	0,10530232
[70,75)	173019	0,146099064	0,38577955	0,14930573
[75,80)	112227	0,176634654	0,46121786	0,20349534
[80,•)	133745	0,180000000	0,70944444	0,5804312

Adicional a estos valores, asumimos una probabilidad de muerte para pacientes críticos del 50 %, independientemente del grupo etario. En este punto es pertinente especificar el significado de las cantidades reportadas. La primera columna, probabilidad de requerir hospitalización se refiere a las posibilidades de necesitar ser hospitalizado de acuerdo con un grupo etario (notación: P(H|G_i)). Por ejemplo, la probabilidad de requerir algún tipo de cuidado hospitalario, dado que el infectado tiene entre 35 y 40 años, es aproximadamente 2,3 %.

La segunda columna, indica la probabilidad de ser caso crítico dado que se requiere hospitalización y se pertenece a un grupo etario P(C|H \(\Omega\) G). La tercera columna reporta la probabilidad de morir cuando se es caso no crítico (por ejemplo, en caso de hospitalización general) y pertenece a un grupo de edad de acuerdo con $P(D|G \cap G_i)$. Por último, se estima la probabilidad de morir cuando se es un caso crítico y se pertenece a un grupo etario particular $P(D|C \cap G) = 0.5$. Definiendo los siguientes eventos, es posible determinar las siguientes probabilidades condicionales de severidad para una persona (que reside en Bogotá) seleccionada al azar y contagiada por el SARS-CoV-2.

- 1) G_i: la persona infectada pertenece al i-ésimo grupo etario.
- 2) H: la persona infectada requiere un tipo de cuidado hospitalario (como hospitalización general o UCI).
- G: la persona infectada requiere hospitalización general.
- 4) C: la persona infectada requiere cuidados críticos.
- 5) D: la persona infectada fallece.

Con estas definiciones es posible calcular las siguientes probabilidades:

1)
$$P(H) = PN_{i=1} P(H|G_i)P(G_i) = 0.034421523.$$

2)
$$P(C|H) = PN_{i=1} P(C|H \cap G_i)P(H|G_i)P(G_i)/P(H) = 0.245132997.$$

3)
$$P(G|H) = 1 - P(C|H) = 0.754867003$$
.

4)
$$P(D|G) = PN_{i=1} P(D|G \cap G_i)P(G|H \cap G_i)P(H|G_i) P(G_i)/P(G) = 0.07719566.$$

5)
$$P(D|C) = PN_{i=1} P(D|C \cap G_i) P(C|H \cap G_i) P(H|G_i) P(G_i) P(C) = 0.5.$$

Así, podemos calcular los parámetros δ :

$$\delta_{M} = 1 - P(H) = 0.965578477,$$

$$\delta_{HR} = P(G|H) \times (1 - P(D|G)) = 0,696594546,$$

$$\delta_{LR} = P(C|H) \times (1 - P(D|C)) = 0,122566499,$$

$$\delta_{HD} = P(G|H) \times P(D|G) = 0.058272457.$$

Tiempos de estadía

Se asumen los mismos tiempos de estadía en los compartimentos del modelo referenciado anteriormente (tabla 2).

Tabla 2. Tiempos promedio de permanencia en cada uno de los compartimentos

Notación	Interpretación	Valor (días)
1	Tiempo promedio de latencia	4,6
$\frac{\omega}{2}$	Tiempo promedio infeccioso de un caso moderado	2,1
$\frac{\gamma_M}{1}$	Tiempo infeccioso promedio de un prehospitalizado	4,5
$\frac{\sigma_C}{1}$	Tiempo promedio en hospitalización general antes de recuperarse	9,5
$\frac{1}{2}$	Teimpo promedio en UCI antes de pasar a cama de recuperación	11,3
$\frac{1}{\gamma_R}$	Tiempo promedio en cama de recuperación antes de ser dado de alta	3,4
$\frac{1}{\sigma_{HD}}$	Tiempo promedio en hospitalización general antes de fallecer	7,6
$ \frac{\frac{1}{\gamma_{HR}}}{\frac{1}{\nu}} \frac{\frac{1}{\nu}}{\frac{1}{\gamma_{R}}} \frac{\frac{1}{\sigma_{HD}}}{\frac{1}{\sigma_{UD}}} $	Tiempo promedio en unidad de cuidados intensivos antes de fallecer	10,1

La justificación de cada uno de los parámetros utilizados de tiempo de estadía se presenta a continuación:

- 1) Tiempo de latencia (4,6 días): según Lauer (4), el tiempo de incubación es 5,1 días; se asume un periodo infeccioso presintomático de 0,5 días.
- 2) Tiempo promedio infeccioso de un caso moderado (2,1 días): se asume un tiempo infeccioso presintomático de 0,5 días para un intervalo serial de 6,7 días (5).
- 3) Tiempo infeccioso promedio de un prehospitalizado (4,5 días): se asumen 4 días en promedio desde la fecha de inicio de síntomas al ingreso al hospital (6), adicionales a los 0,5 días de tiempo infeccioso presintomático.
- 4) Tiempo promedio de estancia en hospitalización general antes de recuperarse (9,5 días): basado en datos no publicados del ICNARC (6).
- 5) Tiempo promedio de estancia en UCI antes de pasar a cama de recuperación (11,3 días): tomado de Walker (1).
- 6) Tiempo promedio de estancia en cama de recuperación posUCI (3,4 días): basado en datos no publicados del ICNARC (6).

- 7) Tiempo promedio en cama de hospitalización general antes de fallecer (7,6 días): basado en datos no publicados del ICNARC (6).
- 8) Tiempo promedio en UCI antes de fallecer: tomado de Walker (1).

Tasas de transmisión

La tasa de transmisión se define como la cantidad promedio de casos secundarios que un caso primario genera por día durante el periodo infeccioso en un compartimento dado. Para un escenario sin mitigación asumimos un número básico de reproducción $R_0 \in \{2,5;3,0\}$ (7). Adicionalmente, asumimos un contagio intrahospitalario pequeño, pero existente. Esto se incluye en el modelo como $\beta_i(t) = \beta_H := 0,01$ para $i \in \{HR,UR,HD,UD,R\}$.

Por otra parte, para los estados infecciosos restantes, definimos la siguiente función:

$$\beta_{M}(t) = \beta_{C}(t) = (1 - A(t))\beta_{O} + A(t)\beta_{I}$$

donde β_0 es la tasa de transmisión para un individuo que circula en la población sin restricciones y β_1 es la tasa de transmisión para un

individuo que limita sus contactos únicamente a las personas con las que convive. Es posible mostrar que esta tasa de transmisibilidad se puede escribir como $\beta_1 = -\kappa_1 \times \log(1 - c)$ (8), donde κ_1 es la tasa de contactos diaria y c es la probabilidad de contagio; tomando c = 0,01 y $\kappa_1 = 1,98$ estimamos que $\beta_1 = 0,019899665$.

El cálculo de la tasa de transmisión β_0 se aborda mediante el método de matrices de siguiente generación (11). En este contexto, la matriz linealizada del subsistema definido por los estados infecciosos es:

$$\begin{bmatrix} \frac{dE}{dI_M}/_{dt} \\ \frac{dI_M}{dt}/_{dt} \\ \frac{dI_{HR}}{dI_{HR}}/_{dt} \\ \frac{dI_{HR}}{dt}/_{dt} \\ \frac{dI_{HD}}{dt}/_{dt} \\ \frac{dI_{HD}}{dt}/_{dt} \\ \frac{dI_{HD}}{dt}/_{dt} \end{bmatrix} = \begin{bmatrix} -\omega & -\beta_M & -\beta_C & -\beta_i & -\beta_i & -\beta_i & -\beta_i & -\beta_i \\ \delta_M \omega & -\gamma_M & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{HR} \sigma_C & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{HR} \sigma_C & -\gamma_{HR} & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{HR} \sigma_C & 0 & -\gamma_{UR} & 0 & 0 & 0 \\ 0 & 0 & \delta_{HD} \sigma_C & 0 & 0 & -\sigma_{HD} & 0 & 0 \\ 0 & 0 & \delta_{UD} \sigma_C & 0 & 0 & -\sigma_{UD} & 0 \\ 0 & 0 & \delta_{UD} \sigma_C & 0 & 0 & 0 & -\sigma_{UD} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\gamma_R \end{bmatrix} \begin{bmatrix} E \\ I_M \\ I_{UR} \\ I_{HD} \\ I_{UD} \\ I_R \end{bmatrix}$$
 Esta puede descomponerse como T + Σ , donde

Esta puede descomponerse como $T + \Sigma$, donde

$$T = \begin{bmatrix} 0 & -\beta_M & -\beta_C & -\beta_i & -\beta_i & -\beta_i & -\beta_i & -\beta_i \end{bmatrix}$$
 (1)

es el vector fila de transmisión y Σ es:

$$\Sigma = \begin{bmatrix} -\omega & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \delta_M \omega & -\gamma_M & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ (1 - \delta_M)\omega & 0 & -\sigma_C & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{HR}\sigma_C & -\gamma_{HR} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{UR}\sigma_C & 0 & -\gamma_{UR} & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta_{HD}\sigma_C & 0 & 0 & -\sigma_{HD} & 0 & 0 \\ 0 & 0 & \delta_{UD}\sigma_C & 0 & 0 & 0 & -\sigma_{UD} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\gamma_R \end{bmatrix}$$

Por otra parte, la matriz de siguiente generación de dominio extendido se define mediante el producto entre y la inversa de:

$$K = -T\Sigma^{-1}$$
 (3)

Nótese que, debido a que $T_{ij} = \mathbf{0} \forall_{i \neq 1}$, se tiene que $K_{ij} = \mathbf{0} \forall_{i \neq 1}$. Luego, el problema de autovalores asociado a k se reduce a:

$$det[K-\lambda I]=0=(K_{11}-\lambda)\lambda^{7}$$

Deacuerdo con Diekmann (11), el autovalor dominante de este problema es equivalente a $R_{\rm 0}$, cuya única solución no trivial es:

$$K_{11} = \lambda_D = R_0 \qquad (4)$$

De (1) y de (3) se tiene que:

$$K_{11} = -(\beta_M \Sigma_{21}^{-1} + \beta_C \Sigma_{31}^{-1} + \beta_i [\Sigma_{41}^{-1} + \Sigma_{51}^{-1} + \Sigma_{61}^{-1} + \Sigma_{71}^{-1} + \Sigma_{81}^{-1}])$$

donde Σ_{i1}^{-1} son los elementos de matriz de la primera columna de Σ^{-1} . Despejando $\beta_{M'}$ y usando $K_{11}=R_{0'}$, $\beta_{M}=\beta_{C}$ y se llega a:

$$-\beta_M = \frac{R_0 + \beta_i (\Sigma_{41}^{-1} + \Sigma_{51}^{-1} + \Sigma_{61}^{-1} + \Sigma_{71}^{-1} + \Sigma_{81}^{-1})}{\Sigma_{21}^{-1} + \Sigma_{31}^{-1}}$$

Para un escenario sin acciones de mitigación (ejemplo A(t) = 0), se tiene $\beta_{\scriptscriptstyle M}=\beta_{\scriptscriptstyle o'}$ con lo que se obtiene:

$$\beta_0 = -\frac{R_0 + \beta_i (\Sigma_{41}^{-1} + \Sigma_{51}^{-1} + \Sigma_{61}^{-1} + \Sigma_{71}^{-1} + \Sigma_{81}^{-1})}{\Sigma_{21}^{-1} + \Sigma_{31}^{-1}}$$

Asumiendo R_0 = 2,5 y calculando simbólicamente lo elementos de matriz Σ_{i1}^{-1} , se tiene que $\beta_0^{(1)}$ = 1,1439. Por otra parte, tomando R_0 = 3,0 se determina que $\beta_0^{(2)}$ =1,3730.

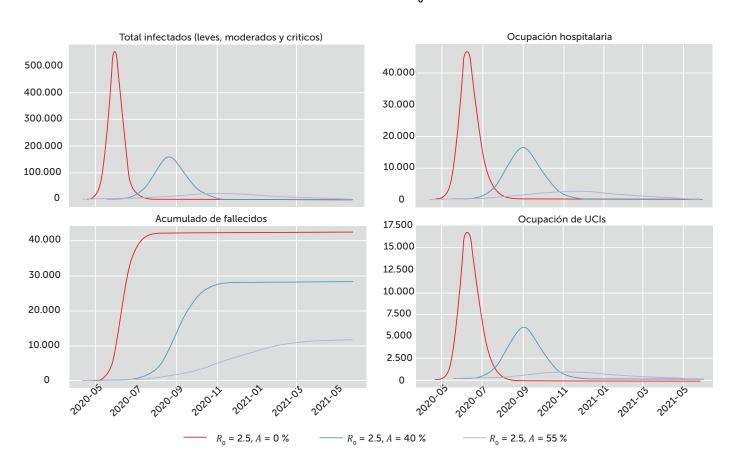
Resultados

Se consideran dos tipos de escenarios en los cuales para $A(t) \neq 0\%$ se asume que se inician las acciones de mitigación a partir del 12 de abril de 2020.

- 1) Con un R_0 de 2,5: se asumen A(t) = 0 % (sin acciones de mitigación), 40 % y 55 %, y se inicia simulación.
- 2) Con un R_0 de 3,0: se asumen A(t) = 0 % (sin acciones de mitigación), 40 % y 60 %, y se inicia simulación.

Para todos los escenarios, a excepción de aquellos sin acciones de mitigación, se asume un índice de movilidad para el periodo inicial simulado, no se utiliza este índice en los escenarios por una ventana más amplia dada la evidencia de correlación entre el número de reproducción efectivo y el nivel de la movilidad (9).

Adicionalmente, debido a la alta incertidumbre inherente a la situación generada por el COVID-19, los resultados aquí presentados son simulaciones de escenarios hipotéticos y no pronósticos del curso futuro de la epidemia.


En todos los casos se asume una cantidad inicial de 1021 infectados, 117 hospitalizados, 47

en UCI y 49 fallecidos, y se inicia la simulación el 12 de abril de 2020.

Escenarios con un número básico de reproducción igual a 2,5

En estos escenarios se impone que R_0 = 2.5 para todo t. Con el fin de facilitar la interpretación de los resultados, se reporta la suma $I_{\rm HR}+I_{\rm HD}+I_{\rm R}$ como la demanda de hospitalización general; análogamente, $I_{\rm UR}+I_{\rm UD}$ es la demanda de unidades de cuidado intensivo.

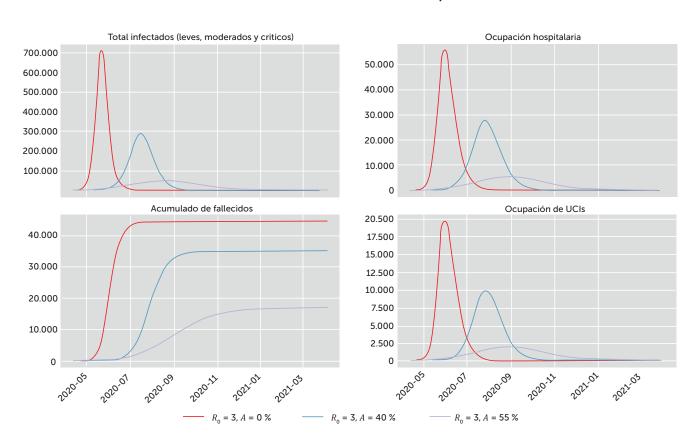
Figura 2. Simulación de escenarios con 0 %, 40 % y 55 % de distanciamiento social asumiendo $R_0 = 2.5$.

Sin acciones de mitigación

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de hospitalización general de 16 296 el 8 de junio, y 46 847 en la misma fecha respectivamente. Adicionalmente, se estiman 42 296 fallecidos acumulados en total (anexo 1 y figura 2).

Distanciamiento social del 40 %

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de hospitalización general de 5957 el 2 de septiembre y 16 296 el 1 de septiembre. Adicionalmente, se estiman 28 225 fallecidos acumulados en total. (anexo 2 y figura 2).


Distanciamiento social del 55 %

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de hospitalización general de 942 el 16 de noviembre y 2543 en la misma fecha respectivamente. Adicionalmente, se estima un acumulado de más de 11 898 fallecidos (anexo 3 y figura 2).

Escenarios con un número básico de reproducción igual a 3,0

En estos escenarios se impone que para todo t. Con el fin de facilitar la interpretación de los resultados, se reporta la suma $I_{HR} + I_{HD} + I_{R}$ como la demanda de hospitalización general; análogamente, $I_{UR} + I_{UD}$ es la demanda de unidades de cuidado intensivo.

Figura 3. Simulación de escenarios con 0 %, 40 % y 55 % de distanciamiento social asumiendo R0 = 3,0.

Vemos en los siguientes escenarios que la cantidad de infectados, requerimientos hospitalarios y fallecidos aumenta significativamente. Adicionalmente, note que las demandas máximas de recursos sanitarios tienen lugar en un momento posterior comparado con el primer escenario y que la epidemia dura una mayor cantidad de tiempo.

Sin acciones de mitigación

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de hospitalización general de 19725 el 31 de mayo, y 55 555 en la misma fecha respectivamente. Adicionalmente, se estiman 44 546 fallecidos acumulados en total (anexo 4 y figura 3).

Distanciamiento social del 40 %

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de hospitalización general de 10 039 el 27 de julio, y 27 710 el 1 de septiembre. Adicionalmente, se estiman 35 032 fallecidos acumulados en total (anexo 5 y figura 3).

Distanciamiento social del 60 %

En esta simulación se tiene una demanda máxima de unidades de cuidados intensivos y de

hospitalización general de 2058 el 30 de agosto y 5573 en la misma fecha respectivamente. Adicionalmente, se estima un acumulado de más de 17 053 fallecidos (anexo 6 y figura 3).

Discusión

Se ha desarrollado un modelo simple que puede capturar el efecto de la infecciosidad promedio en una población heterogénea y el efecto de las políticas de distanciamiento social para controlar la pandemia del COVID-19 en la ciudad de Bogotá. También es posible capturar un efecto conjunto de las otras medidas, que aún no son cuantificables de forma individual, considerando el número efectivo de reproducción.

En la tabla 3 se puede ver un resumen de los escenarios simulados. De estos resultados fue posible inferir que, sin acciones de mitigación, la demanda de recursos sanitarios sobrepasaría la capacidad instalada de la ciudad y, en consecuencia, elevaría la letalidad. Adicionalmente, diferencias en la tasa de transmisión impactan en gran medida la demanda máxima de UCI. Dado que el número efectivo de reproducción se encuentra estrechamente relacionado con esta tasa, monitorear el R. es necesario para un manejo adecuado de la epidemia.

Tabla 3. Resumen de resultados de simulación

Escenario	Acumulado fallecidos	Máximo hospitalización	Máximo UCI	Fecha máximo UCI
R ₀ = 2,5 sin mitigación	42296	46848	16741	09/06/2020
$R_0 = 3.0 \sin \text{ mitigación}$	44546	55555	19725	31/05/2020
$R_0 = 2.5 \text{ y } 40 \% \text{ de distanciamiento social}$	28227	16296	5957	2/09/2020
R ₀ = 3,0 y 40 % de distanciamiento social	35032	27710	10039	27/07/2020
R ₀₌ 2,5 y 55 % de distanciamiento social	11898	2543	942	16/11/2020
R ₀₌ 3,0 y 60 % de distanciamiento social	17053	5573	2058	30/08/2020

De los escenarios simulados se observó que, para disminuir la demanda de UCI a una cantidad cercana o inferior a las 2000 unidades, es necesario un nivel de aislamiento sostenido del 55 %.

Finalmente, aproximando la proporción de la población inmune necesaria para que exista un segundo brote por medio de la ecuación, es posible estimar que la cantidad de personas con anticuerpos para lograr la inmunidad de rebano es aproximadamente 4555723 cuando $R_0 = 2.5$ y 5 061 914 cuando $R_0 = 3.0$. También es claro que el tamaño del segundo brote depende en gran medida de la proporción remanente de susceptibles dentro de la población. Por lo tanto, en el escenario con $R_0 = 2.5$ y distanciamiento social del 60 %, se espera un segundo brote mucho mayor en comparación a los valores observados de este escenario, lo cual es opuesto a lo que se esperaría en los escenarios con R_o = 2,5 con 40 % de distanciamiento social.

Si bien el modelo SEIIHR es conceptualmente adecuado para simular una epidemia como la del COVID-19, la incertidumbre en diversos parámetros hace de este modelo una herramienta para la evaluación cualitativa de las acciones de intervención y no como un modelo para pronosticar la cantidad de casos futuros. Conforme exista mejor calidad en la información, se podrán refinar los escenarios presentados, cuantificar la incertidumbre e incrementar el poder predictivo del modelo.

Referencias

1. Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. The impact of COVID-19 and strategies for mitigation and suppression in lowand middle-income countries. Science. 2020;369(6502):413-22.

- Brauer F, Castillo-Chavez C, Feng Z. Mathematical Models in Epidemiology. New York: Springer New York; 2019.
- 3. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669-77.
- 4. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172(9):577-82.
- 5. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(8):911-9.
- 6. Intensive Care National Audit & Research Centre. ICNARC report on COVID-19 in critical care 04 April 2020 [Internet]. 2020 [citado 28 de junio de 2021]. Disponible en: https://www.icnarc.org/DataServices/Attachments/Download/76a7364b-4b76-ea11-9124-00505601089b
- 7. Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. J Clin Med. 2020;9(4):967.
- 8. Keeling MJ, Rohani P, Pourbohloul B. Modeling Infectious Diseases in Humans and Animals: Modeling Infectious Diseases in Humans and Animals. Clin Infect Dis. 2008;47(6):864-5.
- 9. Ainslie KEC, Walters CE, Fu H, Bhatia S, Wang H, Xi X, et al. Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment. Wellcome Open Res. 2020;5:81.

- Cori A, Ferguson NM, Fraser C, 10. Cauchemez S. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. Am J Epidemiol. 2013;178(9):1505-12.
- 10. Diekmann O, Heesterbeek AP and Roberts MG. The construction of nexgeneration matrices for compartmental epidemic models. Journal Of The Royal Society Interface. 2010;7:873-885.

Anexos

Anexo 1. Resultados del escenario sin acciones de mitigación asumiendo $R_{\scriptscriptstyle 0}$ = 2,5

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	2.035	112	43	71
26/04/2020	6.836	247	88	101
3/05/2020	22.698	767	264	184
10/05/2020	72.543	2.485	850	449
17/05/2020	20.6327	7.614	2.605	1287
24/05/2020	436.824	19.680	6.766	3635
31/05/2020	555.206	36.804	12.802	8.741
7/06/2020	417.446	46.612	16.551	16.457
14/06/2020	223.032	42.847	15.669	24.656
21/06/2020	100.577	31.727	12.042	31.360
28/06/2020	42.114	20.465	8.117	35.970
5/07/2020	17.108	12.082	5.037	38.807
12/07/2020	6.871	6.730	2.965	40.433
19/07/2020	2.750	3.603	1.685	41.324
26/07/2020	1.101	1.877	936	41.796
2/08/2020	441	959	512	42.041
9/08/2020	178	483	277	42.167
16/08/2020	72	241	149	42.231
23/08/2020	29	119	79	42.263
30/08/2020	12	58	42	42.280
6/09/2020	5	29	22	42.288

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
13/09/2020	2	14	12	42.292
20/09/2020	1	7	6	42.294
27/09/2020	0	3	3	42.295
4/10/2020	0	2	2	42.295
11/10/2020	0	1	1	42.296
18/10/2020	0	0	0	42.296
25/10/2020	0	0	0	42.296
1/11/2020	0	0	0	42.296
8/11/2020	0	0	0	42.296
15/11/2020	0	0	0	42.296
22/11/2020	0	0	0	42.296
29/11/2020	0	0	0	42.296
6/12/2020	0	0	0	42.296
13/12/2020	0	0	0	42.296
20/12/2020	0	0	0	42.296
27/12/2020	0	0	0	42.296
3/01/2021	0	0	0	42.296
10/01/2021	0	0	0	42.296
17/01/2021	0	0	0	42.296
24/01/2021	0	0	0	42.296
31/01/2021	0	0	0	42.296
7/02/2021	0	0	0	42.296
14/02/2021	0	0	0	42.296
21/02/2021	0	0	0	42.296
28/02/2021	0	0	0	42.296
7/03/2021	0	0	0	42.296
14/03/2021	0	0	0	42.296
21/03/2021	0	0	0	42.296
28/03/2021	0	0	0	42.296
4/04/2021	0	0	0	42.296

Anexo 2. Resultados del escenario con 40 % de distanciamiento social asumiendo $R_{_0}$ = 2,5

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	642	88	35	69
26/04/2020	665	78	31	85
3/05/2020	754	77	30	100
10/05/2020	935	83	31	114
17/05/2020	1.279	100	37	131
24/05/2020	1.818	131	47	151
31/05/2020	2.575	180	65	179
7/06/2020	3.968	258	92	218
14/06/2020	6.344	393	139	275
21/06/2020	10.095	617	218	364
28/06/2020	15.940	976	344	506
5/07/2020	24.864	1.537	542	728
12/07/2020	38.060	2.392	843	1.077
19/07/2020	56.616	3.654	1.290	1.615
26/07/2020	80.769	5.424	1.918	2.425
2/08/2020	108.686	7.729	2.741	3.602
9/08/2020	135.490	10.425	3.712	5.232
16/08/2020	154.045	13.120	4.698	7.353
23/08/2020	158.336	15.240	5.499	9.915
30/08/2020	147.270	16.252	5.920	12.760
6/09/2020	125.198	15.934	5.871	15.665
13/09/2020	98.808	14.461	5.399	18.400
20/09/2020	73.629	12.271	4.648	20.797
27/09/2020	52.606	9.843	3.787	22.772

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
4/10/2020	36.469	7.540	2.947	24.322
11/10/2020	24.784	5.571	2.213	25.486
18/10/2020	16.614	4.000	1.614	26.333
25/10/2020	11.037	2.808	1.150	26.936
1/11/2020	7.288	1.938	805	27.355
8/11/2020	4.794	1.320	556	27.643
15/11/2020	3.146	890	379	27.838
22/11/2020	2.061	595	257	27.969
29/11/2020	1.348	396	172	28.057
6/12/2020	882	262	115	28.115
13/12/2020	576	173	77	28.153
20/12/2020	377	114	51	28.179
27/12/2020	246	75	33	28.196
3/01/2021	161	49	22	28.207
10/01/2021	105	32	15	28.214
17/01/2021	69	21	10	28.218
24/01/2021	45	14	6	28.222
31/01/2021	29	9	4	28.224
7/02/2021	19	6	3	28.225
14/02/2021	12	4	2	28.226
21/02/2021	8	3	1	28.226
28/02/2021	5	2	1	28.227
7/03/2021	3	1	0	28.227
14/03/2021	2	1	0	28.227
21/03/2021	1	0	0	28.227
28/03/2021	1	0	0	28.227
4/04/2021	1	0	0	28.227

Anexo 3. Resultados del escenario con 60 % de distanciamiento social asumiendo R_0 = 2,5

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	642	88	35	69
26/04/2020	665	78	31	85
3/05/2020	754	77	30	100
10/05/2020	935	83	31	114
17/05/2020	1.279	100	37	131
24/05/2020	1.818	131	47	151
31/05/2020	2.575	180	65	179
7/06/2020	3.177	246	88	217
14/06/2020	3.660	308	111	267
21/06/2020	4.207	368	133	328
28/06/2020	4.825	430	156	399
5/07/2020	5.521	497	180	483
12/07/2020	6.299	570	207	578
19/07/2020	7.164	652	237	688
26/07/2020	8.118	743	270	813
2/08/2020	9.160	843	307	955
9/08/2020	10.288	953	347	1.116
16/08/2020	11494	1.072	390	1.298
23/08/2020	12.767	1.200	437	1.502
30/08/2020	14.089	1.336	487	1.729
6/09/2020	15.437	1.478	539	1.982
13/09/2020	16.782	1.624	593	2.260
20/09/2020	18.091	1.771	648	2.565
27/09/2020	19.326	1.916	702	2.895

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
4/10/2020	20.447	2.056	754	3.252
11/10/2020	21.412	2.185	802	3.633
18/10/2020	22.186	2.300	845	4.036
25/10/2020	22.736	2.396	882	4.457
1/11/2020	23.040	2.470	911	4.894
8/11/2020	23.087	2.520	931	5.342
15/11/2020	22.873	2.542	941	5.796
22/11/2020	22.411	2.536	941	6.251
29/11/2020	21.721	2.504	930	6.703
6/12/2020	20.832	2.445	911	7.147
13/12/2020	19.781	2.363	882	7.578
20/12/2020	18.605	2.261	846	7.993
27/12/2020	17.345	2.143	803	8.388
3/01/2021	16.037	2.013	756	8.760
10/01/2021	14.715	1.874	705	9.108
17/01/2021	13.408	1.732	653	9.431
24/01/2021	12.140	1.588	600	9.728
31/01/2021	10.930	1.447	548	10.000
7/02/2021	9.789	1.310	497	10.247
14/02/2021	8.728	1.180	448	10.469
21/02/2021	7.750	1.057	402	10.670
28/02/2021	6.856	943	359	10.848
7/03/2021	6.046	837	319	11.008
14/03/2021	5.317	741	283	11.149
21/03/2021	4.664	654	250	11.274
28/03/2021	4.082	575	220	11.384
4/04/2021	3.566	505	193	11.480

Anexo 4. Resultados del escenario con 40 % de distanciamiento social asumiendo $R_{_0}$ = 3,0

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	2.775	123	47	71
26/04/2020	12.831	373	130	111
3/05/2020	57.572	1.616	550	264
10/05/2020	227.157	6.850	2.326	928
17/05/2020	585.050	22.964	7.839	3.421
24/05/2020	682.348	46.697	16.180	9.771
31/05/2020	399.741	55.428	19.725	19.308
7/06/2020	166.592	45.676	16.872	28.547
14/06/2020	60.814	30.440	11.778	35.324
21/06/2020	21.142	17.917	7.320	39.552
28/06/2020	7.244	9.797	4.256	41.942
5/07/2020	2.472	5.115	2.378	43.220
12/07/2020	844	2.593	1.296	43.881
19/07/2020	289	1.290	697	44.215
26/07/2020	100	633	371	44.382
2/08/2020	35	308	197	44.465
9/08/2020	12	149	104	44.506
16/08/2020	4	72	55	44.526
23/08/2020	2	35	29	44.536
30/08/2020	1	17	15	44.541
6/09/2020	0	8	8	44.544
13/09/2020	0	4	4	44.545
20/09/2020	0	2	2	44.546
27/09/2020	0	1	1	44.546

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
4/10/2020	0	0	1	44.546
11/10/2020	0	0	0	44.546
18/10/2020	0	0	0	44.546
25/10/2020	0	0	0	44.546
1/11/2020	0	0	0	44.546
8/11/2020	0	0	0	44.546
15/11/2020	0	0	0	44.546
22/11/2020	0	0	0	44.546
29/11/2020	0	0	0	44.546
6/12/2020	0	0	0	44.546
13/12/2020	0	0	0	44.546
20/12/2020	0	0	0	44.546
27/12/2020	0	0	0	44.546
3/01/2021	0	0	0	44.546
10/01/2021	0	0	0	44.546
17/01/2021	0	0	0	44.546
24/01/2021	0	0	0	44.546
31/01/2021	0	0	0	44.546
7/02/2021	0	0	0	44.546
14/02/2021	0	0	0	44.546
21/02/2021	0	0	0	44.546
28/02/2021	0	0	0	44.546
7/03/2021	0	0	0	44.546
14/03/2021	0	0	0	44.546
21/03/2021	0	0	0	44.546
28/03/2021	0	0	0	44.546
4/04/2021	0	0	0	44.546

Anexo 5. Resultados del escenario con 60 % de distanciamiento social asumiendo R_0 = 2,5

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	762	90	36	70
26/04/2020	960	89	34	86
3/05/2020	1.337	104	39	104
10/05/2020	2.054	138	50	126
17/05/2020	3.518	209	75	156
24/05/2020	6.266	349	123	205
31/05/2020	11.070	609	214	289
7/06/2020	21.330	1.097	383	438
14/06/2020	41.978	2.103	733	716
21/06/2020	79.334	4.059	1.413	1.255
28/06/2020	138.847	7.530	2.626	2.274
5/07/2020	214.074	12.906	4.517	4.090
12/07/2020	275.025	19.565	6.895	7.010
19/07/2020	284.696	25.337	9.024	11.086
26/07/2020	239.658	27.710	10.018	15.913
2/08/2020	171.294	25.955	9.564	20.778
9/08/2020	109.450	21.399	8.068	25.037
16/08/2020	65.226	15.989	6.186	28.372
23/08/2020	37.320	11.098	4.417	30.770
30/08/2020	20.855	7.290	2.990	32.390
6/09/2020	11.518	4.601	1.946	33.433
13/09/2020	6.320	2.817	1.230	34.082
20/09/2020	3.456	1.686	760	34.475
27/09/2020	1.887	992	462	34.710

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
4/10/2020	1.029	575	277	34.847
11/10/2020	562	330	164	34.927
18/10/2020	306	188	96	34.973
25/10/2020	167	106	56	34.999
1/11/2020	91	60	32	35.013
8/11/2020	50	33	19	35.022
15/11/2020	27	19	11	35.027
22/11/2020	15	10	6	35.029
29/11/2020	8	6	3	35.031
6/12/2020	4	3	2	35.031
13/12/2020	2	2	1	35.032
20/12/2020	1	1	1	35.032
27/12/2020	1	1	0	35.032
3/01/2021	0	0	0	35.032
10/01/2021	0	0	0	35.032
17/01/2021	0	0	0	35.032
24/01/2021	0	0	0	35.032
31/01/2021	0	0	0	35.032
7/02/2021	0	0	0	35.032
14/02/2021	0	0	0	35.032
21/02/2021	0	0	0	35.032
28/02/2021	0	0	0	35.032
7/03/2021	0	0	0	35.032
14/03/2021	0	0	0	35.032
21/03/2021	0	0	0	35.032
28/03/2021	0	0	0	35.032
4/04/2021	0	0	0	35.032

Anexo 6. Resultados del escenario con 60 % de distanciamiento social asumiendo $R_0 = 3.0$

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
12/04/2020	1.021	117	47	49
19/04/2020	762	90	36	70
26/04/2020	960	89	34	86
3/05/2020	1.337	104	39	104
10/05/2020	2.054	138	50	126
17/05/2020	3.518	209	75	156
24/05/2020	6.266	349	123	205
31/05/2020	11.070	609	214	289
7/06/2020	15.236	1.008	354	434
14/06/2020	18.512	1.410	499	652
21/06/2020	22.252	1.807	645	942
28/06/2020	26.415	2.221	797	1.304
5/07/2020	30.901	2.666	960	1.742
12/07/2020	35.539	3.141	1.135	2.263
19/07/2020	40.086	3.635	1.317	2.872
26/07/2020	44.241	4.129	1.499	3.569
2/08/2020	47.678	4.594	1.673	4.353
9/08/2020	50.093	5.000	1.826	5.215
16/08/2020	51.256	5.314	1.947	6.141
23/08/2020	51.058	5.510	2.026	7.114
30/08/2020	49.532	5.573	2.058	8.111
6/09/2020	46.846	5.497	2.038	9.105
13/09/2020	43.263	5.292	1.971	10.073
20/09/2020	39.092	4.979	1.863	10.994
27/09/2020	34.639	4.583	1.723	11.851
4/10/2020	30.169	4.137	1.563	12.632

Fecha	Infectados	Requieren hospitalización general	Requieren UCI	Acumulado de fallecidos
11/10/2020	25.886	3.667	1.392	13.331
18/10/2020	21.931	3.200	1.220	13.945
25/10/2020	18.382	2.753	1.054	14.477
1/11/2020	15.269	2.340	900	14.932
8/11/2020	12.587	1.967	760	15.317
15/11/2020	10.315	1.640	635	15.639
22/11/2020	8.411	1.357	527	15.906
29/11/2020	6.831	1.115	435	16.126
6/12/2020	5.530	912	356	16.307
13/12/2020	4.464	743	291	16.455
20/12/2020	3.596	603	236	16.575
27/12/2020	2.892	487	192	16.672
3/01/2021	2.323	393	155	16.750
10/01/2021	1.863	317	125	16.814
17/01/2021	1.493	255	100	16.865
24/01/2021	1.196	204	81	16.906
31/01/2021	957	164	65	16.938
7/02/2021	766	131	52	16.965
14/02/2021	612	105	42	16.986
21/02/2021	490	84	33	17.003
28/02/2021	391	67	27	17.016
7/03/2021	313	54	21	17.027
14/03/2021	250	43	17	17.036
21/03/2021	200	34	14	17.042
28/03/2021	160	28	11	17.048
4/04/2021	127	22	9	17.052